
 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 AWS ECS Fargate security analysis

 Jaume Boniquet Travila 01 June 2022

 Abstract

 Kubernetes (K8s) has been for several
 years the king of container
 orchestration. It distributes application
 workloads across clusters and
 automates container creation,
 management and governance.
 Kubernetes also allocates storage and
 volumes to running containers,
 provides automatic scaling, and works
 continuously to maintain the state of
 applications. It is well known for being
 a robust and secure environment (as
 long as it is deployed and constructed
 following some security principles, best
 practices, and coherent architecture
 design).

 The process of securitization of
 standard K8s is out of the scope of this
 research. This research focuses on
 analyzing from an infosec and
 perspective, new adaptations of K8s
 that could potentially introduce some
 weaknesses to a mature software
 solution that was released about 8
 years ago.

 Some vendors have developed new
 alternatives based on the source code
 of K8s. One of the most noticeable
 ones is “Azure Kubernetes Service
 (AKS)” and “Amazon Elastic Container
 Service (ECS)”. For the sake of clarity
 and time, this research will focus on
 the latter platform, and to be even in

 more detail, to the relatively new
 implementation of ECS and ECS
 “ Fargate ” which is a fully managed
 orchestration platform provided by the
 vendor Amazon Web Services. (AWS).

 Many vendors advertise that their new
 solutions are reinforced, more agile,
 easier to administer, cost effective and
 a plethora of advantages, but what
 about the new potential security issues
 that may be introduced in non-mature
 platforms compared to the horse of
 battle K8s ?

 In this paper some attack scenarios
 will be devised and tested out, with the
 objective to determine any potential
 vulnerability, issue or room for
 improvement compared to the
 traditional K8s. Also it covers how to
 protect the infrastructure and objects
 created within ECS and finally, an
 additional section will cover some
 examples and scenarios on how a
 malicious attacker could leave a
 backdoor or a routine to access in a
 stealthy way. Where applicable,
 mitigation key points will be covered.

 1. Introduction

 Due to the complexity and similarities
 between the different types of
 orchestrators based on K8s, a
 comprehensive introduction and

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 definitions are required to fully provide
 meaning to the paper.

 Not long ago Kubernetes (also known
 as K8s) was one of the most
 revolutionary Open Source solutions
 for container orchestration. Minded to
 orchestrate (automating deployment,
 scaling, and management of
 containerized applications.) Docker
 application containers are still heavily
 being used by the most demanding
 and modular applications developed
 today.

 Kubernetes (K8s) basically eliminates
 many of the manual processes
 involved in deploying and scaling
 containerized applications, providing
 deployment speed, workload
 portability, simplification of provisioning
 resources, application development
 and delivery. Can also perfectly
 integrate with any kind of applications
 and cloud environments.

 As described in the Abstract, this
 paper focuses on AWS ECS and ECS
 Fargate.
 Fargate is not a Kubernetes
 distribution.
 Fargate is an operational mode within
 Amazon Elastic Container Service
 (ECS) that abstracts container host
 clusters and servers away from the
 user of the service, meaning that there
 is no need to configure anything
 further down the infrastructure stack
 making the infrastructure management
 simple.

 AWS ECS is different because it
 delivers more control over the
 infrastructure, but the trade-off is the

 added management that comes with it
 as it is not a fully managed service.

 In short, this means that AWS ECS
 Fargate imposes some limitations not
 allowing some custom personalization
 but in exchange makes the
 deployment of containerized
 applications simpler, without complex
 infrastructure management.

 2. Related work

 Related work to the attack scenarios
 tested out and documented in this
 paper are scarce and many of them
 non-existent.
 Notwithstanding, there are a few
 publications covering some security
 best practices in a low level non deep
 technical way, threat models and
 vendors attempting to sell some
 security software with their
 publications.

 After additional research, no tools or
 proof of concepts were found capable
 of breaking or compromising the ECS
 Fargate security model.

 3. EKS, ECS vs ECS Fargate

 In order to shed some light on these
 confusing concepts and terminologies,
 a brief explanation of the three is
 below.

 Amazon Elastic Container Service
 (ECS): Amazon’s own container
 platform.

 Amazon Elastic Kubernetes Service
 (EKS): Amazon’s managed

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 Kubernetes platform based on Open
 source code.

 AWS Fargate: Amazon own
 serverless container platform that
 works with ECS and EKS.

 Amazon ECR: is an AWS managed
 container image registry storage
 service. Docker images can be
 pushed, pulled or managed.

 Amazon ECS
 ● Launches ECS Tasks on ECS

 clusters

 ● Two types of instances
 provisioning:

 ○ EC2 Launch Type:
 ■ You must

 provision &
 maintain the
 infrastructure (the
 EC2 instances).

 ■ Each EC2
 instance must run
 the ECS Agent to
 register in the
 ECS cluster

 ■ AWS takes care of
 starting/stopping
 containers as
 needed

 ○ Fargate Launch type :
 ■ You do not need

 to provision the
 EC2 infrastructure
 (but of course
 there are servers
 behind but it is

 transparent.

 ■ 100% serverless

 ■ You just need to
 create task
 definitions

 ■ AWS runs ECS
 tasks according to
 the needed
 CPU/RAM and
 auto-scales tasks
 (by defining the
 amount you desire
 in the settings)
 automatically,
 without the need
 of provisioning or
 creating new EC2
 instances.

 ■ Easier to manage
 and maintain than
 “EC2 Launch
 type”.

 4. ECS Fargate Concepts and
 overview

 AWS ECS Fargate was released in
 2017 to simplify the workflow involved
 in running containerized workloads.
 Fargate acts as an abstraction layer of
 the orchestrator ECS. With the AWS
 Fargate abstracted model, the
 underlying nodes are not visible, and
 also not searchable in the VPC (very
 likely they are EC2 instances).

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 ECS model diagram:

 * For a detailed explanation of each
 element and equivalent term in a
 standard K8s orchestrator, check the
 “ Acronyms and definitions ” section of
 this paper.

 ECS clusters overview:

 A high-level summary of the steps
 involved in deploying a container
 image in Fargate are as follows:

 1. Push the customized Docker
 image to Amazon Elastic
 Container Registry (ECR) or
 pull an image from a public
 image repository
 (https://hub.docker.com) or

 (https://gallery.ecr.aws/)

 2. Create a task definition with the
 chosen container image along
 with the desired CPU, memory,
 and networking ports.

 3. Create a Fargate cluster
 associated with a VPC and
 subnet which are used for
 routing the traffic to the
 workload.

 4. (OPTIONAL) Launch an ALB
 and point the listener to the
 container port.

 5. Finally, create a service
 definition with desired task
 count and associate it with the
 ALB (if any).

 5. Advantages and
 disadvantages of AWS ECS
 Fargate

 Pros :
 ● Easy to deploy any

 application and
 containers (low
 requirement of
 Know-How).

 ● No need to select the
 right server type.

 ● Pay only for the
 underlying resources
 needed by each
 container

 ● Enhanced security model

 Cons :
 ● Lower control of your

 infrastructure
 ● Hard to predict the cost
 ● Less Customization

https://securityaversion.net/
https://hub.docker.com/
https://gallery.ecr.aws/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 ● For additional storage
 (more than 20gb, you
 need EFS which incurs in
 more costs)

 ● Service not available in
 all regions.

 6. Types of attackers

 Attackers typically fall into one
 of three areas:

 ● Amateur: Amateurs are
 curious individuals who
 carry out attacks just to
 “ see if it can be done. ”

 ● Expert : Experts attack
 under the auspices of
 scientific institutions and
 universities studying the
 technology.

 ● Professional:
 Professional attackers
 motivated for financial
 rewards or to obtain
 sensitive data and
 compromise a system.

 7. Attacks

 Before attempting to reproduce any
 test, make sure your aws-cli is updated
 to the latest version . Some commands
 do not work properly with older
 versions, even if recently updated.

 6.1 Attack vector #1: Access to
 the VPC/Host

 AWS Fargate launch type
 pre-provisions a fleet of EC2 instances
 within a VPC which are not accessible.
 By issuing the “ ecs execute-command ”
 it was possible to access the
 instances, but not to edit the settings
 of the underlying EC2 instances or
 VPC settings (actually is possible, but
 when the task is relaunched, all
 changes are gone).

 This attack is deemed not successful,
 but with some additional research may
 leverage some weakness.

 Attack vector mitigations: None

 6.2 Attack vector #2: Attack on
 the Agent.

 Each EC2 instance launched in the
 Fargate runs Amazon Linux 2 that has
 Docker runtime along with an agent
 that manages the two-way
 communication with the control plane.
 This agent is responsible for pulling
 the images from the registry and
 calling the Docker APIs to manage the
 lifecycle of each container defined in
 the task.

 Some basic ELF debugging was
 performed, along with some basic
 binary scanners. At a first glance
 nothing relevant was observed to
 easily exploit any potential vulnerability
 existing in the binary files. A deeper
 binary debugging is required to
 analyze any potential hidden
 vulnerability among the binary files.

https://securityaversion.net/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 The files can be found in this folder,
 placed in the root:

 /managed-agents

 Attack vector mitigations: Due to the
 limitation of time, no deep reversing
 was able to be performed, so a
 feasible attack was not succeeded via
 this method.

 6.3 Attack vector #3 Exec
 commands

 Simply try to execute commands if you
 already have access to the
 infrastructure or into a compromised
 account.
 In a traditional K8s deployment you
 can connect to the containers by using
 ”docker exec -it” but in ECS is
 slightly different, as there are two
 options to do:

 [1.] ECS Exec:

 aws ecs execute-command \
 --region us-east-2 \
 --cluster <cluster_name> \
 --task <task_id> \
 --container <container_name> \
 --command "/bin/bash" \
 --interactive

 [2.] Systems Manager:

 aws --profile <local_profile> ssm
 start-session --target <instance-id>

 Remember that in order to be able to
 connect using an interactive shell to

 the containers, you need two
 requisites:

 ● Have permissions of:

 "ssmmessages:CreateControl
 Channel",
 "ssmmessages:CreateDataC
 hannel",
 "ssmmessages:OpenControl
 Channel",
 "ssmmessages:OpenDataCh
 annel"

 ● Enable the Execute Command
 in the Service Task Definition.
 This can not be done via web
 CLI, only via command line

 Check if ECS Exec is enabled
 by ensuring that the response
 matches this value:
 “ "enableExecuteCommand" :
 true ,” :

 aws ecs describe-tasks \
 --cluster your-cluster-name \
 --tasks your-task-id

 Enable ECS exec in a service:
 You can’t enable ECS Exec for
 existing tasks. It can only be
 enabled for new tasks.

 aws ecs update-service \
 --cluster your-cluster-name \
 --service your-service-name

 \
 --task-definition

 your-td-family-name:Number \
 --force-new-deployment \
 --enable-execute-command

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 Exec to enter to an ECS
 container:

 aws ecs execute-command
 --cluster cluster-name \

 --task task-id \
 --container container-name

 \
 --interactive \
 --command "/bin/sh"

 SSM enter to an ECS container:

 aws ssm start-session --target
 ecs:ClusterName_Task_id_C
 ontainer_ID

 Attack vector mitigations: If for some
 reason an attacker has gained access
 to execute commands into a container,
 this will cause no major impact on the
 service itself because the attacker has
 no access to the ECS Task Definitions
 in order to permanently modify or alter
 the settings.

 On the other hand if the container
 execution role has excessive
 permissions, those could be abused to
 jump into other vulnerable containers
 or reuse the Temporary Access Tokens
 of that role associated with the
 container to further escalate privileges
 or perform any other malicious actions.

 6.4 Attack vector #4 Instance
 Metadata Attacks.

 ECS Fargate Launch type:
 After some testing, all attempts to call
 the metadata service via ECS Exec did
 not retrieve the session values on the

 regular Metadata Endpoint IMDSv1. It
 turns out that ECS had a different
 IMDSv1 called “ Task metadata
 endpoint ”. It was possible to retrieve
 the Metadata Temporary Access Keys,
 which can also be abused as normal
 and regular IMDSv1. Details about the
 specific ECS metadata endpoint can
 be found in the appendix #12 or here .

 curl
 169.254.170.2$AWS_CONTAINER_
 CREDENTIALS_RELATIVE_URI

 ECS EC2 Launch type:
 When using an IAM role with your
 tasks that are running on Amazon EC2
 instances, the containers aren't
 prevented from accessing the
 credentials that are supplied to the
 Amazon EC2 instance profile. Via
 access to the container or by wrong
 web/proxy configurations, it is possible
 to steal the credentials metadata.
 These credentials can then be used in
 the AWS CLI or other means to make
 API calls as the IAM role.

 Bear in mind that if you use those
 credentials outside the EC2, an alert
 will trigger in AWS Trusted Advisor !

 curl
 http://169.254.169.254/latest/meta-d
 ata/

 Attack vector mitigations:
 To mitigate this attack, implement
 IMDSv2, to prevent external users
 from receiving credentials, allowing
 only application resources to receive
 them.

https://securityaversion.net/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 6.5 Attack vector #5 Remount,
 reuse ephemeral storage.

 According to the documentation , the
 Ephemeral Storage is automatically
 assigned to all containers with a
 capacity of 20 GB and is encrypted.
 Textually it indicates “ The ephemeral
 storage is encrypted with an AES-256
 encryption algorithm, which uses an
 AWS owned encryption key .”

 During the tests performed it was not
 possible to determine if the ephemeral
 storage was really encrypted. After
 issuing some of the most common
 commands to determine this status,
 none was successful. As probably
 AWS uses a custom CMK, this could
 be transparent to the linux instances
 and do not reflect as it is not encrypted
 by the host but with an external
 abstraction layer.

 df -h
 lsblk -o
 lsblk –all -T
 dmsetup status
 ecryptfs-verify --home

 The second most common mounted
 filesystem is AWS EFS because it is
 compatible with both, “ EC2 Launch
 Type ” and “Fargate Launch type ”.
 There are some chances that the
 volumes used for data persistence are
 shared among tasks/containers and
 can be read/mounted within the same
 multi-AZ. As this is defined within the
 Task Definition, it is expected that
 hosts with the proper definition can
 access these volumes.

 Attack vector mitigations:
 It could not be irrefutably determined
 that the volumes are really encrypted.
 Also all attempts to remount volumes
 from other tasks (active and expired)
 did not succeed, so this attack
 scenario, with the set of tests
 performed, could not be exploited, so
 no mitigations are needed.

 8. Hardening

 Regardless of the attack tests results
 performed in this essay, there are
 some general best practices to make
 your environment a bit more secure. It
 consists of applying some specific
 settings. There is no silver bullet
 solution to protect against attacks or
 backdoors, but rather a set of
 measures that all together provides a
 robust ecosystem capable of stopping
 specialized attackers. Some of these
 best practices are as follows:

 1. Follow the AWS ECS security
 best practices The information
 can be found here .

 2. Implement IMDSv2 to prevent
 attacks related to stealing the
 instances metadata Temporary
 Access keys, migrate to
 IMDSv2 and deny the usage of
 the old version IMDSv1.
 More details can be found in the
 appendix #9 or by clicking on
 this site or on this other site .

 3. Do not assign VPC with public
 access/routing to the Task
 Definitions. Instead use a

https://securityaversion.net/
https://aws.amazon.com/about-aws/whats-new/2021/04/amazon-ecs-aws-fargate-configure-size-ephemeral-storage-tasks/?nc1=h_ls
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-metadata-options.html
https://aws.amazon.com/es/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 LoadBalancer (ALB) in front.

 4. Recurrent infra checks with IaC:
 If your infrastructure is deployed
 as code (IaC), it is highly
 recommended to run at least a
 daily check against the
 infrastructure in order to verify
 that no new malicious code or
 by mistake, any changes were
 introduced.
 Please note that such a solution
 will only detect changes to the
 already existing infrastructure
 that was created by the IaC
 solution. If an attacker creates
 new resources, those will not be
 scanned nor detected by the
 IaC run/validate/init/plan/apply
 commands.

 5. Deny access to the Metadata
 Temporary Access Keys:
 Restrict IMDSv1 availability by
 locking down the metadata
 endpoint so it is only accessible
 to specific O.S. users. On Linux
 machines, there are two ways
 of achieving it:

 ip-lockdown 169.254.169.254
 root

 ip-lockdown 169.254.170.2
 root

 or

 iptables -A OUTPUT -m
 owner ! --uid-owner root -d
 169.254.169.254 -j DROP

 iptables -A OUTPUT -m

 owner ! --uid-owner root -d
 169.254.170.2 -j DROP

 An additional step to prevent
 containers run by tasks that use
 the “ awsvpc ” network mode,
 from accessing the credential
 information supplied to the
 Amazon EC2 instance profile,
 while still allowing the
 permissions that are provided
 by the task role, set the:

 ECS_AWSVPC_BLOCK_IMD
 S

 agent configuration variable to
 “ true ” in the agent configuration
 file and restart the agent.

 For additional details on
 alternative environment
 variables to protect access,
 please check the appendix #13
 or click here .

 Note: During the tests
 performed, for some unknown
 reason, this environment
 variable protection does not
 work with ECS Fargate launch
 type instances !!

 6. Platform version.
 Use the latest platform version.
 If AWS releases a new version,
 it will not automatically migrate,
 unless a “ update-service ”
 command is issued. As of
 today, the latest version is
 (1.4.0).

https://securityaversion.net/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 7. Exec command
 Regular users shall not be able
 to log-in (get a remote
 interactive shell) to the
 containers in production
 environments. Proper
 mechanisms should be put in
 place for monitoring, debugging,
 and log analysis.

 It is suggested to tag tasks and
 create IAM policies by
 specifying the proper conditions
 on those tags.

 ...
 "Action": [
 "ecs:ExecuteCommand"

],
 "Condition": {

 "StringEquals": {

 "aws:ResourceTag/tag-key":
 "tag-value"",

 "StringEquals": {

 "ecs:container-name":
 "<container_name>"

 }
 }

 },
 "Resource":"arn:aws:ecs:<reg
 ion>:<aws_account_id>:clust
 er/<cluster_name>"
 ...

 8. Strict permissions, segregation
 and naming convention
 Tasks roles shall be segregated
 as much as possible for the
 purpose of the job. For
 example, if we assign the same
 Security Group (with
 permissions to S3, DynamoDB,
 etc) to several other services

 (via Task Definitions), we may
 be risking giving too many
 permissions to a container that
 could be potentially exploited by
 an attacker and then he could
 abuse those roles and
 permissions.

 Plan a good strategy for
 creating the roles and their
 corresponding permissions. As
 per any specific and individual
 needs, strategies may different
 one from each other, but a
 generalistic good example
 naming convention is aso
 detailed for each ECS role type.

 Task role: permissions granted
 in this IAM role are assumed by
 the containers running in the
 task.

 Applicable to both, the EC2
 Launch Type and ECS Fargate
 Launch Type, this role is used
 to allow each task/container to
 have a specific or different role
 as may be needed by the
 requirements of the application
 or service running inside the
 container. These settings are
 defined in the “ Task Definition ”.

 Make sure NOT to grant “ Task
 role ” permissions to Secrets
 Manager / SSM or other broad
 permissions as they can be
 abused if by some technique
 the container is compromised
 by an attacker.

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 An example of a good role
 naming convention is:

 ecs-<ENVIRONMENT>-<SE
 RVICE_NAME>-task-role

 Task Execution IAM role: role
 required to perform some tasks
 on your behalf such as:

 Makes API calls to ECS service,
 Sends task/container logs to
 CloudWatch Events, Pulls
 docker images from the AWS
 ECR repository, Reference
 credentials data from Secrets
 Manager or SSM Parameter
 Store

 Try to give the least permissions
 as possible.

 ○ AWS ECS Fargate
 Launch types: Ensure to
 make use of the minimal
 list of permissions used
 in the managed policy

 “AmazonECSTaskExec
 utionRolePolicy”

 ○ AWS ECS EC2 Launch
 types , ensure to make
 use of the minimal list of
 permissions used in the
 managed policy

 “AmazonEC2Container
 ServiceforEC2Role”

 Some common additional
 policies attached along
 with the previous roles
 could be
 SecretsManager,
 DataDog, CloudWatch,
 etc.

 An example of a good
 role naming convention
 is:

 ecs-<ENVIRONMENT
 >-task-execution-role

 9. Sensitive data in Task
 Definitions
 ECS task definitions are
 metadata in JSON format to tell
 ECS how to run a Docker
 container.
 Some of the information it may
 contain is: image name, port
 binding for container and host,
 RAM & CPU, environment
 variables, network details, IAM
 roles, Logging setup, etc.

 Do not put sensitive
 environment variables, don’t
 use public not reputable docker
 images, and unnecessary ports
 mapping.

 10. VPC and Security groups
 (During the creation of a
 Service or task definition)

 a. Ensure “ Auto-assign
 public IP is “ DISABLED ”

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 on all services.

 b. When setting up an ECS
 in “ awsvpc ” network
 mode, ensure not to
 attach to the service
 public facing subnets.

 11. LB’s secure connections and
 Security Groups
 If Target Groups towards
 LoadBalancers are attached to
 ECS services, ensure those are
 using secure and encrypted
 connections and non plain
 protocols such as HTTP. For
 example implies the usage of
 MTLS between the applications
 and the Load Balancers (which
 likely requires modifying the
 source code of the applications
 or to set up a mesh).

 Try not to directly expose open
 ports accessible from the
 internet to the
 services/containers during the
 ECS Service creation phase.

 12. Protect the containers by
 granting read-only permissions
 to the root folder. Set “ Read
 only root file system ” to “ true ”
 inside:

 task definition /
 <container_name> /
 containers definitions /
 storage and logging

 13. By default ECS logs the
 invocation command along with

 the user that invoked it will be
 logged in AWS CloudTrail. To
 log all commands and their
 outputs inside the shell session,
 enable in SSM the sessions
 logging to CloudWatch or S3,
 under:

 SSM / Node Management /
 Session Manager /
 Preferences

 14. Assets tagging
 An SCP (Service Control Policy
 via AWS Organizations) can be
 forged to protect from editing,
 deletion or any other sensitive
 API call that is not supposed to
 be common.

 Tag all ECS clusters, tasks,
 tasks definitions, containers,
 IAM roles, and ECS services
 security groups to benefit from
 such SCP protection. An
 example of such a policy was
 created and tested. For the
 sake of clarity, just a few service
 API calls were documented, but
 additional ones can be added
 as required per each business
 case and specific needs.

 …
 "ecs:UpdateService",
 "eks:TagResource",
 “eks:UntagResource"

],
 "Resource": [
 "*"

],
 "Condition": {
 "StringEquals": {

 "aws:ResourceTag/<key>": [
 "<value>"

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

]
 }

 }
 },

 …

 15. Limiting access to the Start
 Session action
 While starting SSM sessions on
 your container outside of ECS
 Exec is possible, this could
 potentially result in the sessions
 not being logged. Sessions
 started outside of ECS Exec
 also count against the session
 quota. Deny the
 ”ssm:start-session” action
 directly for your Amazon ECS
 tasks using an IAM policy
 attached to the users, not to the
 container task roles.

 Policy example:

 "Version": "2012-10-17",
 "Statement": [{ "Effect":
 "Deny", "Action":
 "ssm:StartSession",
 "Resource":
 "arn:aws:ecs:*:111122223333:
 task/cluster-name/*" }]

 16. Implement a service
 connectivity mesh and service
 encryption
 A service mesh is a logical
 boundary for network traffic
 between the ECS services that
 reside within it. The objective is
 to prevent service
 communication among them. In
 a standard K8s, EKS, and ECS
 deployment, all containers or
 services can communicate

 among them, with no
 restrictions. If one service or
 container is compromised by an
 attacker, it makes the task of
 jumping across hosts
 (containers) easier.
 More details about service
 mesh here , and about AWS
 mesh solutions here and here .
 To enable TLS between
 connected services within a
 mesh, follow this tutorial .

 17. Shared responsibility model
 Remember to follow the security
 best practices for Docker at all
 times. AWS ECR is not
 invulnerable and its design
 principles are based on the
 shared responsibility model.
 In short, this means that the
 service users are responsible
 for patching, hardening, the
 container, the network, data,
 etc. Additional details can be
 found here .
 Some of the most noticeable
 securitization examples that the
 vendor will not perform and is
 up to the service users are:

 ● Do not run services
 inside pods with the root
 user. Then, you can run
 the application as a
 non-root user by using
 “ USER ” in Dockerfile.
 You must build the
 docker image with a user
 and upload it to ECR
 before you run the ECS
 tasks.

https://securityaversion.net/
https://avinetworks.com/glossary/kubernetes-service-mesh/
https://aws.amazon.com/es/blogs/containers/service-connectivity-inside-and-outside-the-mesh-using-aws-app-mesh-ecs-fargate/
https://aws.amazon.com/es/blogs/compute/using-aws-app-mesh-with-fargate/
https://aws.amazon.com/es/blogs/containers/traffic-encryption-app-mesh-across-accounts-certificates/
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security-shared.html

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 ● Scan with a Vulnerability
 Scanner all packages
 and dependencies (ECR
 Scan, Trivy, etc)

 ● Do not use public
 untrusty docker images

 9. Backdooring

 There are many ways an attacker or
 an insider employee may leave a
 backdoor or some sort of access to
 later access the cluster or services. In
 some cases it is either possible to
 cover his tracks or to gain access to
 the infrastructure at some point. Below
 it is described some potential features
 and techniques that can be used to
 leave latent access.

 1. Create an ECS service with a
 rogue task definition that
 includes an inline policy with
 administrator privileges. Then
 attach this task definition to the
 Task/Pod, run the containers
 with a reverse Netcat shell
 scheduled daily to reverse
 connect to another server
 (outside the AWS infrastructure)
 that the attacker has control.
 Then the attacker will have
 access to the container, which
 has assigned an execution role
 with excessive permissions,
 which can be used (for example
 by reusing the Temporary
 Access Tokens) to execute any
 commands to the AWS
 infrastructure with Administrator
 privileges.

 The more services are in the
 production environment, the
 more unlikely it is for IT
 administrators to find out who
 and what is the purpose of this
 service and can remain active
 for a long time.

 2. In Systems Manager (SSM),
 surf to “ Sessions Manager ”,
 then to the tab “ Preferences ”,
 section “ Shell Profiles ” and add
 some rogue commands to be
 executed in the shell profile
 when connecting to hosts. More
 info here .

 After some testing, this property
 appears to only work in
 Standard ECS tasks running in
 EC2 containers or EKS
 instances, not in ECS Fargate
 launch types (when connecting
 via ECS Exec).

 Similar backdoors can be left in
 the ECS Task Definition, under
 the section “ Containers
 Definition / command ” where a
 custom command can be
 entered only when the
 task/container is launched.
 Remember that Task Definitions
 have versions and this change
 can be easily tracked down via
 CloudTrail/CloudWatch.
 Also note that in order to add
 any of these commands to the
 settings, IAM permissions of
 “ AmazonECS_FullAccess ” and
 “ AdministratorAccess ” are
 required.

https://securityaversion.net/
https://us-east-2.console.aws.amazon.com/systems-manager/session-manager/preferences?region=us-east-2

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 3. Editing or adding backdoors to
 any already existing assets
 created by Terraform or
 CloudFormation stacks (IaS)
 will be likely detected or
 replaced in the next deployment
 or execution.

 Any assets that were not
 created by any IaC solution will
 not be managed, alerted nor
 detected.
 Being said that, if an attacker
 has IAM permissions to create a
 Lambda, it is possible to create
 a simple python code that is
 executed recurrently to perform
 any innocuous action. For
 example launching an ECS
 service which uses an already
 compromised container image
 from the public ECR
 repositories. This persistent
 hack is likely not to be easily
 detected for a long time.

 10. Conclusions

 After an intensive testing over the
 platform, several attack vectors were
 covered, with not much success.
 The attack vectors “6.1 Attack vector
 #1: Access to the VPC/Host”,
 “6.2 Attack vector #2: Attack on the
 Agent”, “6.5 Attack vector #5 Remount,
 reuse ephemeral storage.” did not
 provide good results as not effective
 weaknesses could be found using the
 techniques described in this paper. It is
 not discarded that by using additional
 methodologies for testing, these may
 be exploited somehow.

 On the other hand, the attack vectors
 “6.3 Attack vector #3 Exec commands”
 and
 “6.4 Attack vector #4 Instance
 Metadata Attacks.” were quite
 successful. Both attack vectors require
 access to the existing infrastructure
 somehow, either because an attacker
 has gained access to a container, or
 by having credentials or API keys with
 enough IAM privileges to execute
 these actions. Wild exploitation of
 these attack vectors is not easy and
 not within the reach of a non highly
 skilled attacker. Usually these kinds of
 attacks could be exploited by insiders
 or when AWS API keys are leaked.

 Regarding the Hardening section, a
 comprehensive set of best practices
 were found and documented. Not
 applying them does not mean that the
 environment or containers will be
 vulnerable, but in the author’s opinion
 of this research, it will slow down any
 potential attacker (insider or outsider)
 and is based on the principle of
 zero-trust security model. The author
 is a big fan of the “ Onion Theory of
 Data Security Layers ” which consists
 of multiple defensive layers that
 support each other.

 Being said that, by applying all the
 security recommendations listed
 above, even if an attacker gets access
 to AWS API Keys, to a container, to an
 IAM role, etc, the impact of the
 malicious actions is greatly reduced
 and in some cases, early detection of
 a successful attack or backdoor
 placement.

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 Finally, regarding the section
 Backdooring, real interesting scenarios
 were devised and tested. Three
 scenarios were covered and in case of
 achievement, these backdoors would
 be hard to detect even for the most
 trained IT staff. They are not high-tech
 backdoors as could be by loading
 customized pieces of code in the
 shape of LKM’s in a Linux kernel
 module, but given that the AWS
 infrastructure is so big, small changes
 to it may go undercover. It is implicit
 that in order to place any backdoors, it
 does not matter if it is AWS, Linux, or
 any kind of other system, some sort of
 access and privileges are required in
 order to place them, and in this case, it
 is not an exception.

 11. Further research

 Additional research is needed to figure
 out alternative ways to exploit IMDSv2
 metadata temporary keys.

 Also, during the elaboration of the
 hardening guidelines, when
 implementing the environment variable
 “ECS_AWSVPC_BLOCK_IMDS”, it did
 not prevent calls to the metadata
 service on ECS Fargate Launch type
 instances. Additional research is
 needed to find alternative ways to
 block them.

 Due to the limitation on time, not
 enough resources could be assigned
 to decompile and properly debug the
 binary files (Systems manager agents)
 used by AWS to manage the
 connectivity between docker
 containers and ECR. A large amount

 of time is required to debug them and
 attempt to find any potential
 vulnerabilities.

 Regarding the section Backdooring,
 there was no information at all publicly
 documented, so this looks like an area
 where additional research may be
 performed in the future.

 New attack vectors may exponentially
 grow as the ECS service and features
 are added over time by the vendor.
 This means that in the near future,
 potential new findings are to be found
 in further research.

 12. Acknowledgements

 The author would like to thank the
 reviewers for their helpful comments,
 critics and advice. Finally, thanks to my
 family and friends who helped me in
 ways unknown to them.

 13. Acronyms and
 definitions

 Cluster: a group or bunch of nodes
 that executes containerized
 applications
 In Fargate, this term is also called
 “ Cluster ”.

 Node: are comprised of virtual or
 physical machines in a cluster; these
 "worker" machines contains all the
 necessary to run the application
 containers
 In Fargate, this term is equal to “ Node ”
 but is transparently managed by the
 vendor.

https://securityaversion.net/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 Pod: a logical group of one or more
 containers running together in the
 same space/cluster
 In Fargate, this term is equal to “ Task ”.

 Replica set / deployment: Set of
 pods/tasks that hosts an application.
 In Fargate, this term is equal to
 “ Service ”.

 Kubernetes API : the application that
 serves Kubernetes functionality
 through a RESTful interface and stores
 the state of the cluster

 Kubernetes Control Plane: maintains
 a record of all of the Kubernetes
 Objects in the system, and runs
 continuous control loops to manage
 those objects’ state

 Master: Every cluster has a master
 node, as well as several “worker”
 nodes. The master includes three
 critical processes for managing the
 state of your cluster: kube-apiserver,
 kube-controller-manager and
 kube-scheduler.

 kubectl: command line interface for
 managing operations on K8s clusters
 and API.

 Minikube : tool to locally run K8s for
 testing and development purposes.

 Volume: a directory of data residing in
 a pod and can be accessed by any
 container running inside that pod.

 Persistent volume: a directory of data
 which content persists after the pods
 and containers life.

 Ephemeral volume: underlying
 hardware physically attached to the
 host for the instance used for
 temporary and not persistent data
 storage.

 14. References
 [1.] https://enterprisersproject.com/sites
 /default/files/kubernetes_glossary.pdf

 [2.] https://docs.aws.amazon.com/Ama
 zonECS/latest/developerguide/Welco
 me.html

 [3.] https://docs.aws.amazon.com/Ama
 zonECR/latest/public/public-repositorie
 s.html#public-repository-concepts

 [4.] https://docs.aws.amazon.com/Ama
 zonECS/latest/userguide/ecs-exec.htm
 l

 [5.] https://aws.amazon.com/blogs/cont
 ainers/new-using-amazon-ecs-exec-ac
 cess-your-containers-fargate-ec2/

 [6.] https://www.skyhighsecurity.com/en
 -us/about/newsroom/blogs/threat-rese
 arch/how-an-attacker-could-use-instan
 ce-metadata-to-breach-aws.html

 [7.] https://hackingthe.cloud/aws/exploit
 ation/ec2-metadata-ssrf/

 [8.] https://attack.mitre.org/matrices/ent
 erprise/cloud/

 [9.] https://aws.amazon.com/es/blogs/s
 ecurity/defense-in-depth-open-firewalls
 -reverse-proxies-ssrf-vulnerabilities-ec
 2-instance-metadata-service/

https://securityaversion.net/
https://enterprisersproject.com/sites/default/files/kubernetes_glossary.pdf
https://enterprisersproject.com/sites/default/files/kubernetes_glossary.pdf
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECR/latest/public/public-repositories.html#public-repository-concepts
https://docs.aws.amazon.com/AmazonECR/latest/public/public-repositories.html#public-repository-concepts
https://docs.aws.amazon.com/AmazonECR/latest/public/public-repositories.html#public-repository-concepts
https://docs.aws.amazon.com/AmazonECS/latest/userguide/ecs-exec.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/ecs-exec.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/ecs-exec.html
https://aws.amazon.com/blogs/containers/new-using-amazon-ecs-exec-access-your-containers-fargate-ec2/
https://aws.amazon.com/blogs/containers/new-using-amazon-ecs-exec-access-your-containers-fargate-ec2/
https://aws.amazon.com/blogs/containers/new-using-amazon-ecs-exec-access-your-containers-fargate-ec2/
https://www.skyhighsecurity.com/en-us/about/newsroom/blogs/threat-research/how-an-attacker-could-use-instance-metadata-to-breach-aws.html
https://www.skyhighsecurity.com/en-us/about/newsroom/blogs/threat-research/how-an-attacker-could-use-instance-metadata-to-breach-aws.html
https://www.skyhighsecurity.com/en-us/about/newsroom/blogs/threat-research/how-an-attacker-could-use-instance-metadata-to-breach-aws.html
https://www.skyhighsecurity.com/en-us/about/newsroom/blogs/threat-research/how-an-attacker-could-use-instance-metadata-to-breach-aws.html
https://hackingthe.cloud/aws/exploitation/ec2-metadata-ssrf/
https://hackingthe.cloud/aws/exploitation/ec2-metadata-ssrf/
https://attack.mitre.org/matrices/enterprise/cloud/
https://attack.mitre.org/matrices/enterprise/cloud/
https://aws.amazon.com/es/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/es/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/es/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/es/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

 This paper was released on 01 June 2022. For the most recent version visit https://securityaversion.net
 ———

 [10.] https://docs.aws.amazon.com/cli/l
 atest/reference/ec2/modify-instance-m
 etadata-options.html

 [11.] https://docs.aws.amazon.com/Am
 azonECS/latest/developerguide/task-m
 etadata-endpoint.html

 [12.] https://docs.aws.amazon.com/Am
 azonECS/latest/developerguide/task-m
 etadata-endpoint.html

 [13.] https://docs.aws.amazon.com/Am
 azonECS/latest/developerguide/task-ia
 m-roles.html

 [14.] https://hackingthe.cloud/aws/explo
 itation/ec2-metadata-ssrf/

 [15.] https://www.ernestchiang.com/en/
 posts/2021/using-amazon-ecs-exec/

 [16.] https://docs.aws.amazon.com/Am
 azonECS/latest/bestpracticesguide/se
 curity.html

 [17.] https://aws.amazon.com/about-aw
 s/whats-new/2021/04/amazon-ecs-aws
 -fargate-configure-size-ephemeral-stor
 age-tasks/?nc1=h_ls

https://securityaversion.net/
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-metadata-options.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-metadata-options.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-metadata-options.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://hackingthe.cloud/aws/exploitation/ec2-metadata-ssrf/
https://hackingthe.cloud/aws/exploitation/ec2-metadata-ssrf/
https://www.ernestchiang.com/en/posts/2021/using-amazon-ecs-exec/
https://www.ernestchiang.com/en/posts/2021/using-amazon-ecs-exec/
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security.html
https://aws.amazon.com/about-aws/whats-new/2021/04/amazon-ecs-aws-fargate-configure-size-ephemeral-storage-tasks/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2021/04/amazon-ecs-aws-fargate-configure-size-ephemeral-storage-tasks/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2021/04/amazon-ecs-aws-fargate-configure-size-ephemeral-storage-tasks/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2021/04/amazon-ecs-aws-fargate-configure-size-ephemeral-storage-tasks/?nc1=h_ls

