
This	paper	was	released	01	June,	2018.	For	the	most	recent	revision,	related	source	code	visit	
http://securityaversion.net		
	

BREAKING DOWN SUBRESOURCE INTEGRITY
(SRI)

Jaume Boniquet Travila
01 June 2018, Barcelona, SPAIN

Abstract

Today’s web sites are rich in content,
using multiple architecture coding
languages and frameworks. As
technology advances, so does the
web standard specification.

In order to provide in websites
advanced and reactive capabilities to
user actions, it is required the use of
scripting languages such as
JavaScript, Node.js, etc. There are
many source codes libraries that
already provide standard functions to
perform common actions, such as
pop-ups, fade in/out windows, and
almost any kind of behavior that is
desired.

It is common to leverage the use of
third party scripts to load in
websites, to provide advanced
features or functionalities.

As mentioned before, among others,
that could JavaScript or Node.js. But
loading third party scripts from
untrusted sources might be
dangerous. In this paper is analyzed
how sensitive is to load untrusted

source code from uncontrolled
locations and how does behave the
W3C Subresource Integrity (SRI) to
some custom attacks to mitigate this
potentially threat.

1. Introduction

It is common to see websites loading
external scripts to provide advanced
features, menus, time counters, or
reactive actions depending the user
interaction within a website, but this
poses a severe risk to our website
integrity, confidentiality and
reputation.

The reason is simply. Any source
code loaded from untrusted sources
(out of your control) is susceptible to
be changed or altered without any
notification. This means that
legitimate scripts loaded from
external sites, such as a CDN or a
non-custom locations, could be
compromised for hostile purposes.

Additionally, not only the risk comes
from hostile purposes, but also from
unintentional source code edits that
could render the service unusable or

|	2	
	

with errors facing to all service users
(potential customers for example).

This paper focuses in some attack
vectors that could potentially make
the SRI check useless or bypass it.

2. Related Work.

Related work to the vulnerabilities
described in this paper does exist,
and a few examples will be
described below.

An article 1 published in Troyhunt
website describes how the
“Brownsealoud” product was
affected by a cryptominer. The issue
was caused because a JavaScript
code was loaded directly from a
Github repository (Igo Escobar
account) and one of the project
contributors (web developer)
introduced the following source
code:

<script	
src="https://github.com/igorescobar/jQuer
y-Mask-Plugin/blob/gh-
pages/js/jquery.mask.min.js"	
type="text/javascript></script>	

As can be seen, it loads another
JavaScript code, which was
tampered with and a JavaScript code
was added to create a cryptominer
that affected over 4.000 websites.

																																																													
1https://www.troyhunt.com/the-javascript-
supply-chain-paradox-sri-csp-and-trust-in-third-
party-libraries/		

After further research, no tools or
proof of concepts were found
capable to break or compromise the
SRI.

3. SRI concepts and overview.

The purpose of this paper is no to
explain how does the Subresource
Integrity Check (SRI) work or to be
a guide explaining detailed concepts
of specific features, however a basis
is required to understand how the
attack vectors may be exploited.

SRI uses an integrity value that may
contain multiple hashes separated by
a whitespace.

These hashes in reality are
cryptographic digest in Base-64
format, by applying a particular hash
function to some input (for example
a script or a style sheet file). But it is
common to use shorthand hash to
mean cryptographic digest, so this is
what is used in SRI.

The current SRI specification
supports the following cryptographic
hashes:

• SHA-256
• SHA-384
• SHA-512

The stronger algorithm is used, the
longer it will take the client side to
calculate the hash for the given
resource (it is quite fast, but for huge
source code input files, calculating
the hash might take some seconds).

|	3	
	

In order to generate a hash, several
tools can be used for that purpose,
but in this case it has been chosen
the command line tool called
“shasum”, which can be called using
the following command:

“shasum –b –a 256 <filename>”

Below is an example of a SHA-256
bit hash of the word “test”:

9F86D081884C7D659A2FEAA0C5
5AD015A3BF4F1B2B0B822CD15
D6C15B0F00A08

Next is a SHA-384 hash, also using
the same text as before.

768412320f7b0aa5812fce428dc470
6b3cae50e02a64caa16a782249bfe8
efc4b7ef1ccb126255d196047dfedf1
7a0a9

Finally is a SHA-512 encoded with
the same text:

ee26b0dd4af7e749aa1a8ee3c10ae9
923f618980772e473f8819a5d4940e
0db27ac185f8a0e1d5f84f88bc887fd
67b143732c304cc5fa9ad8e6f57f500
28a8ff

Note that the hash length increases
from 32 characters in the first case,
followed by 64 and finally 64.

For more information about hashes,
visit the following 2reference.

																																																													
2https://en.wikipedia.org/wiki/Secure_Hash_Al
gorithms		

On each browser request with the
SRI enabled, it will perform a hash
function over the requested resource
and them compare both hashed. A
resource will only be loaded if I
match on of those hashes hardcoded
within the code.

An easy way to generate and
automatically calculate the hash for a
given script file or URI is using the
following online service:

https://www.srihash.org/

In the following example we have
used the public JQuery library (
http://code.jquery.com/jquery-
2.2.3.min.js) and the SRI compliant
output was as follows:

<script
src="https://code.jquery.com/jquery-
2.2.3.min.js" integrity="sha384-
I6F5OKECLVtK/BL+8iSLDEHowS
AfUo76ZL9+kGAgTRdiByINKJaqT
PH/QVNS1VDb"
crossorigin="anonymous"></script>

Another way to generate the integrity
hashes would be using the following
shell command line:

openssl dgst -sha384 -binary
FILENAME.js | openssl base64 -A

As explained before, mind that the
SRI is a feature enabled on client
side, to be precise on the web
browser. If the web browser does not

|	4	
	

supper or has compatibility with the
security standard, it will simply not
work.

Therefore below is a list of all
browsers and its compatibility with
SRI.

Besides all the steps described above
to make SRI work, there is still one
additional requirement to be set. The
webserver serving the files must
have the “crossorigin” or Cross
Origin Resource Sharing (CORS)
header enabled (this is a requirement
set by the W3C organization).
Before going deeper, first it will be
briefly described how does CORS
work and is intended to behave.

CORS is a mechanism that allows
restricted resources (such as files,
fonts, style sheets, etc) on a web
page to be retrieved from another
domain from which the first resource
was served.

CORS defines a way in which a
browser and server can interact to
determine whether or not it is safe to
allow the cross-origin request.

CORS is supported in the following
browsers:

• Chrome 3+
• Firefox 3.5+
• Opera 12+
• Safari 4+
• Internet Explorer 8+

For simple CORS requests, the
server only needs to add the
following header to its response:

Access-Control-Allow-Origin: *

Important note: Enabling CORS in
a web server with the Allow Origin
set to True can pose at risk some
resources. With that flag enabled
means that any website requesting a
resource from the server will be
served and read. Based on the CORS
W3 Specification it is up to the client
to determine and enforce the
restriction of whether the client has
access to the response data based on
this header. This configuration is
very insecure, and is not acceptable
in general terms, except in the case
of a public API that is intended to be
accessible by everyone.

A secure use of Allow Origin would
be by specifying a list of the valid
domains that are allowed to read the
responses. Therefore, this header
shall only be scoped to only those
specific resources that are public.
The asterisk setting, meaning allows
anonymous requests, shall not be
enabled for web servers containing
private pages or resources that access
is controlled through user validation.

As the standard only allow to specify
one domain within the header, some
custom rules do exist for each
specific web server to retrieve the
domain name of the resource
requester, compare it with a given

|	5	
	

list in the web server settings, and
send the corresponding Allow Origin
header that corresponds (if allowed)

Access-Control-Allow-Origin:
https://example.com

Please see Figure #1 for details
regarding the web browsers
compatibility to interpret CORS
headers returned from the servers.

In this test, it was enabled CORS
response header in Internet
Information Services (IIS) webserver
in a Windows server 2012 operating
System. To do so, it is required to
manually add the following lines of
code to the “web.config” file or by
using the IIS graphical editor.

<configuration>				
<system.webServer>							
<httpProtocol>										
<customHeaders>	
<add	name="Access-Control-Allow-
Origin"	value="*"	/>	
</customHeaders>							
</httpProtocol>				
</system.webServer>	
</configuration>

Figure 1 – Browsers SRI compatibility list

Figure 2 – Browsers CORS compatibility list

|	6	
	

4. Advantages and disadvantages
of a CDN

As mentioned before, SRI is usually
employed when loading resources
from external parties. One of the
most common services used is a
CDN. A Content Delivery Network
(CDN) is a geographically
distributed group of proxy servers.
Its goal is to distribute service and
resources in a very fast way, by
detecting the origin of the request
and serving the content from a
geographically near (or any other
low latency server). It also provides
high performance and availability,
capable of serving broad types of
content, ranging from static files
(scripts, texts, fonts, images, etc),
software, raw files, live stream
media and social networks.
See Figure #3 for a typical CDN

configuration showing a comparative
between a regular network serving
content versus a CDN.

Figure 3 – CDN vs no CDN

	

	

headers returned from the servers.

Advantages Disadvantages
Server with less load CDN’s service have associated costs

(usually charged per served GB)
More concurrent users Add layers of complexity to site releases

Content delivered faster Some CDN’s might be blocked by user’s
firewalls

Geo-location of the content Content served is out of your control and
could potentially be changed without

notice
Caching capabilities Server responses, headers and settings less

customizable than in premise web servers
Figure 4 – CDN comparative	

|	7	
	

5. Types of Attackers

Attackers typically fall into one of
three areas:
• Amateur: Amateurs are curious

individuals who carry out attacks
just to “see if it can be done.”

• Expert: Experts attack under the
auspices of scientific institutions
and universities studying the
technology.

• Professional: Professionals attack
for financial reward or to obtain
sensitive data and compromise a
system.

6.1 Attack vector #1: Running SRI
protected tags without browsers
support

Some testing was performed by
disabling such feature in Firefox
latest version (In Google Chrome
was not possible to disable it as it
has no advanced menus for feature
personalization). When disabling the
SRI feature in a page with it enabled
within the source code and a hash
calculated, turned out that no issues
were caused by the SRI tags, simply,
were ignored by the web browser
without prompting any message to
the user (but it does in the Inspect
logs page), however, the script itself,
and was executed.

• In order to disable the SRI in
Firefox, surf to
"about:config”, then search
for the following term

"security.sri.enable" and
change it to "False"

Attack vector mitigations:

Major web browsers latest versions
(Microsoft Edge, Google Chrome,
Firefox and Safari) do support SRI.
Only old versions of Internet
Explorer, which are still currently in
use by some old Windows, do not
support SRI. This is not a big
problem, but users will not be in that
high level of protection. The
mitigation for this issue is to update
to a newer Operating System version
or simply, move to one of the before
mentioned web browsers that
actually supports it.

6.2. Attack vector #2: Wrong
implementation of SRI without
CORS enabled

As previously described, CORS is
mandatory to be enabled in the
webserver that hosts the files to be
checked with SRI. The W3C standard
clearly states that this is a 3requirement
but sometimes web browsers do differ.
An attempt to use an old web browser
without support for SRI, and CORS
disabled was performed and the results
were unsuccessful, meaning that the
script executed without being verified
by its calculated hash.

On the other hand, the same test was
performed in a web browser with SRI
support but CORS disabled in the server
																																																													
3	https://www.w3.org/TR/SRI/		

|	8	
	

side, and the script did not executed,
simply the “integrity” attribute was
ignored not being able to be verified
using the enclosed hash.

 Figure 5 – Web browser console
error

Attack vector mitigations:

Reducing the impact for this
vulnerability is not really tough at
all. We have seen during the test that
modern web browsers do support
SRI and prevents the execution of
the script if there is some error or
misconfiguration. Also does not
allow to execute the script if the hash
does not match with the one
embedded in the source code.

In regards to the old web browsers, it
showed that the script was executed,
the hash was not verified and no
warnings were displayed to the user.

Therefore, any critical application
making use of SRI with CORS
properly enabled in the server side
would be useless for clients
accessing from old web browser
versions (please see Figure 1 –
Browsers SRI compatibility list).

Attached is below an W3C approved
service to test out web browser SRI
capabilities:

http://w3c-test.org/subresource-
integrity/subresource-

integrity.sub.html

The only mitigation factor is end
users to keep up to date their web
browser. Actually, most vendors
provide auto-update capabilities by
default (unless disabled by the user).

Last but not least, mind that usually
SRI is deployed in scripts loaded
from other domain (commonly
retrieved from a CDN for
performance purposes), but if for
some reason the external resource
does not work or is down, the script
will not load and very likely will
disrupt the normal behavior of the
website. In order to avoid this
potential issue, 4Mozilla foundation
suggests adding some custom code
to load from locally the resource
only in case it was not possible to be
retrieved from the original source.
Below is an example of this failover
solution:

<script
src="//SomeCDN.com//SomeCode.js
" integrity="sha384-******..."
crossorigin="anonymous"></script>
<script>(window.jQuery) ||
document.write('<script
src="/scripts/SomeCode.js"><\/script
>');
</script>

																																																													
4	
https://hacks.mozilla.org/2015/09/subresource
-integrity-in-firefox-43/		

|	9	
	

6.3 Attack vector #3: Hash
collision

A theoretical attack was devised to
look for hash collisions. For
example, if an attacker gain access to
a CDN, an manages to modify or
specially craft a specific resource
that is being loaded by another
service and implements SRI, it will
simply not load because the hash
would not match.

It is known that some old hash
functions were vulnerable to
collisions. For example, MD5 is
vulnerable to it and SHA-1 does also
not provide enough entropy to
generate a secure hash taking in
consideration the current CPU
processing capabilities.

Specially crafted resources could
potentially be forged to match the
unalterable hash of the website, but
the content be totally different than
the original one.

As can be observed in figure #7, a
set of different characters can
produce the same hash, when
theoretically this is impossible.

Figure 7 – Sample of a hash with
collisions (MD5)

Figure #6 shows a comparison
between some of the most common
SHA algorithms.

Figure 6 – SHA comparison

Attack vector mitigations:

SRI only allow three hashing
algorithms to be used:

SHA-256, SHA-384 and SHA-512.

If we take as example the weakest
hashing algorithm (SHA-256), based
that outputs 64 characters which can
either be a lowercase letter or a
number from 0-9. Which should
mean that there are 64^36 distinct
SHA-256 results.

For comparison, as of January 2015,
Bitcoin was computing 300
quadrillion SHA-256 hashes per
second. That's 300×1015 hashes per
second.

If attempted to perform a collision
attack on SHA-256 it will be needed
to calculate up to 2128 hashes. At
the rate Bitcoin is going, it would
take:

2128/(300×1015⋅86400⋅365.25)≈
3.6×1013 years.

|	10	
	

Therefore, the resource manipulation
to create a hash collision coincidence
is nowadays unfeasible.

Hash collision probabilistic are
usually calculated using the Birthday
Problem. Details of this theorem are
out of the scope of this paper, but
included as a 5reference.

6.4. Attack vector #4: Dynamic
code substitution and function
overloading

This attack scenario attempts to
modify the source code of the
website in order to prevent loading
an external resource that is being
loaded using the secure SRI
mechanism. But not also prevent
running the script (which could
potentially include additional
security checks or features not
interesting by an attacker) but also it
has been attempted to replace the
hash or URL pointing to the external
resource.

Some different approaches will be
tested in order to verify if SRI
attributes can be tampered with or
removed.

• Remove the entire “script” tag
that loads the external
resource and performs SRI
verification

																																																													
5	
https://en.wikipedia.org/wiki/Birthday_proble
m			

• Remove the “integrity”
attribute, which as already
seen in attack #1, in old
browsers the script, even if
tampered, will be executed.

• Tamper the “integrity” hash
value to customize it to an
arbitrary value.

• Overload native JavaScript
functions to render unusable
the SRI functionalities.

Our testing case scenario is a
fictional website, where an attacker
can introduce some JavaScript code
using one of the most common web
vulnerabilities, a Stored Cross Site
Scripting 6(XSS).

The content of this sample website is
not important at all, except the line
of code that loads an external
resource with SRI. For that purpose,
we will use the generic source code
already existing in the 7official
Mozilla documentation:

Sample SRI code from Mozilla
<script
src="https://example.com/example-
framework.js" integrity="sha384-
oqVuAfXRKap7fdgcCY5uykM6+R9GqQ
8K/uxy9rx7HNQlGYl1kPzQho1wx4JwY
8wC" crossorigin="anonymous">
</script>	

Before stepping deeper in this attack,
a quick introduction of a XSS
vulnerabilities is required in order to
fully understand it.
																																																													
6	https://www.sans.org/top25-software-errors		
7	https://developer.mozilla.org/en-
US/docs/Web/Security/Subresource_Integrity		

|	11	
	

A XSS is type of injection attack
where an attacker can inject
malicious source code (usually
JavaScript or HTML) in order this to
be executed in the user’s web
browser. Usually this attacks goes
unnoticed to either, the web
application/webserver (unless an
Application Firewall - 8WAF or an
9IDS/IPS device is set between the
communications to inspect and
analyze the traffic in search of
malicious patterns) and in user’s end.
Actually, the end user’s web browser
thinks that the execute script is
legitimate and the malicious code
can perform any kind of action, from
stealing cookies or tokens, sensitive
information retrieval to malware
distribution.

[1] This first approach, it is assumed
that we can load a previous custom
JavaScript code somehow (for
example an XSS) before the
execution of the original source
code.

Using the following script it was
possible to eliminate existing
elements (to be precise the third
element).

Malicious script
<script>
 var myObject = {
 "FirstElement": "#1",
 "SecondElement": "#2",
 "ThirdElement": "#3"
																																																													
8https://en.wikipedia.org/wiki/Web_applicatio
n_firewall		
9https://en.wikipedia.org/wiki/Intrusion_detect
ion_system		

};

delete myObject.ThirdElement;
console.log(myObject);
</script>

When the script gets executed,
effectively the third element was
eliminated and not shown in the
response console as can be seen
below:

Script execution result
1. {FirstElement: "#1", SecondElement:

"#2"}

FirstElement:"#1"
SecondElement:"#2"

However, this sample does only
work with known JavaScript
elements such as variables or
variable arguments, not in native
attributes inside a “<script>” code.

[2] The second approach, instead of
deleting specific JavaScript
elements, it will be attempted to
overload native JavaScript functions
and methods with custom code in
order to replace the standard way the
code will be interpreted. That way, it
is possible to change how does
behave any JavaScript function for a
custom code.

JavaScript does NOT natively
support method overloading. So, if it
sees/parses two or more functions
with a same names it’ll just consider
the last defined function and
overwrite the previous ones.

|	12	
	

Method overload
var InitialMethod = function(){
console.log("Initial");
}

InitialMethod = (function(initial){

function extendedMethod(){
 initial();
 console.log("Extended!");
 }
 return extendedMethod;
})(InitialMethod);

The script above can successfully
replace an existing method and
change its behavior to perform any
desired action. Mind that is required
to analyze the source code of the
web site or external resources, and
search for the specific methods
wanted to tamper with. That way it
would be possible to alter the logic
of any external resource method.
This could definitely be useful for a
typical hacker attack or post
exploitation scenario, but these tests
attempts to disable the SRI and this
is not possible for the same reasons
as the previous described test
scenario.

[3] The third approach consists of
breaking the standard flow of native
JavaScript properties. This test is
quite similar to scenario #1, but with
a notable difference. Instead of
directly deleting a property, which in
some cases can introduce code
compiling issues, the property will
be unloaded from the web browser

DOM just before the SRI script is
executed, and once executed, we
restore to the web browser’s DOM
the removed property.

 //let's suppose
example.framework.js asumes there
is an object called "Object". If we
manage to generate an exception at
runtime, the rest of the script will not
be processed because of the
exception.

 //Saving the object in Object2.
 var window.Object2 =
window.Object;

 //deleting the object
 delete window.Object;

 //The object is restoresd to the
DOM
 document.addEventListener("
DOMContentLoaded",
function(event) {
 window.Object =
window.Object2;
 });

This approach introduces an
additional step, which makes things
even harder for an attacker. As
explained before, the element must
be unloaded just before the SRI is
interpreted, and re-enabled just
before. This means that the attacker
has to be able to inject code on two
different places, making it quite
harsh.

With this type of attack, it was also
not possible to disable the SRI, but

|	13	
	

turned out o be a very convenient
way for post exploitation purposes.

Although it was not possible to
disable the SRI, a collateral effect
can be achieved using a slight
variation in this code. If an external
resource, a JavaScript file is securely
loaded using SRI and we cannot
avoid that, we can attempt to make
the external resource to fail on
execution time, so the script will not
load at all.

When a JavaScript element has been
unloaded from the DOM, if we
manage to check whether the
removed element is present (by using
a comparative element as the source
code below), the JavaScript will
crash and not load the rest of the
code.

Crash JavaScript execution
if(test.test){console.log("down");}
console.log("up")

We can verify with the previous
code snippet, that if “test.test” does
not exists, the interpreter will print
“down” and will never print “up”
because causes a massive error at
execution time, therefore, rendering
the rest of the script useless.

Attack vector mitigations:

None. It was not possible to remove
or replace SRI specific attributes,
even though an XSS was a

requirement to perform any of these
attacks.

6.5. Attack vector #5: Browser
extension dynamic content
interception and injection

This attack consists of coding a
specific web browser add-on that
would emulate a CDN, but actually
will intercept the web traffic, locate
the resources we want to manipulate,
and inject them again. All this made
automatically using pattern
matching.

To develop a custom plug-in for this
purpose is out of the scope of this
paper, but there is already some
Open Source projects than can be
taken as example to develop this.

https://github.com/Synzvato/decentraleyes

Attack vector mitigations:

It would be a requirement to have
installed a specific rogue web
browser add-on, so the first
prevention mechanisms would be not
to install suspicious add-ons,
specially the ones not provided
through the official Chrome/Mozilla
stores, which are likely to contain
untrusted code.

|	14	
	

7. Conclusions.

There are many myths about evading
SRI by dynamically substituting the
content or by overloading functions
in JavaScript, which at a first glance
may seem doable, but all the
approaches tested in this research
failed or required the use of other
severe web application
vulnerabilities in order to break
down the SRI.

SRI proved to be a pretty stubborn
security feature against all the
attacks performed to it, however,
each website is coded in a different
manner, and in specific scenarios, it
can not be discarded to be
bulletproof as by manipulating the
page or an complex attack aided with
web vulnerabilities, may lead to a
weak spot to violate the SRI security
mechanism.

The vulnerability mitigations stated
in this document are an approach to
increase the overall web application
and JavaScript security against tested
potential vulnerabilities.

A high level summary for each
attack vector tested is described as
follows:

#1: Running SRI protected tags
without browsers support:

• To successfully exploit this
attach, the client needs to run
an old web browser with no
support for SRI.

• In Google Chrome there is no
way to deactivate the SRI, so
no social engineering attacks
are feasible with this web
browser.

• Running an up to dated web
browser always provides the
highest level of security, not
only for the latest patches but
also for the top notch security
features embedded in them.

#2: Wrong implementation of SRI
without CORS enabled.

• CORS is mandatory to be
enabled for SRI to work.

• No warnings are shown to the
end user for errors related to
CORS or wrong SRI hashes

• If for some reason the SRI
fails to verify the hash, the
external resource will not be
executed, potentially causing
issues in the website. Mozilla
recommends to locally add
the resource and call it when
it fails to be loaded from an
SRI call or the resource for
some reason was not possible
to be retrieved from the CDN.

#3: Hash collision.

• Hash collision attacks are
unfeasible. Thousands of
years are required to find a
simple collision.

|	15	
	

• Even though SHA-256 being
the weakest algorithm, with
the current processing
capabilities, it is not possible
to find a hash collision.

• Old vulnerable hashing
algorithms are not used in the
SRI specification.

#4: Dynamic code substitution and
function overloading.

• An underlying severe
vulnerability, such as a XSS is
required to perform these
attacks.

• At the very end it was not
demonstrated a successful
SRI remova.

• Alternative underlying
JavaScript attacks were
discovered, that could
potentially be of use for a post
exploitation web application
attack

• Several ways to tamper with
JavaScript were devised, but
none could manipulate
“script” tag attributes to
remove the SRI properties.

#5: Browser extension dynamic
content interception and injection.

• Theoretically, removing the
SRI would be feasible by

using this attack vector

• Installing a rogue web
browser add-on is required to
successfully exploit it

The following table shows for each
attack vector covered in this paper,
the Mitigation difficulty, which
measures the difficulty of
implementing new countermeasures
to solve the vulnerability. The
Exploitation like hood, which means
how easy or difficult is for the
average user to exploit the described
vulnerability. Finally, the last row
called Mitigation conclusion takes in
account all the other rows and the
mitigation vectors suggested to
estimate the solutions effectiveness.

|	16	
	

Attack vector Mitigation
difficulty

Exploitation
like hood

Mitigation
conclusion

#1: Running SRI
protected tags without

browsers support
Low High Complete

#2: Wrong
implementation of SRI
without CORS enabled

Low High Complete

#3: Hash collision
 Low High Complete

#4: Dynamic code
substitution and function

overloading
Low High Complete

#5: Browser extension
dynamic content

interception and injection
Low Medium Partial

8. Further Research.

Further research shall be done to expand the attack vectors devised during this
research. SRI is now in the mainstream release of all major web browsers, and
everyday is gaining more adepts, but still is a feature fairly not well known.

An approach to further research on the first attack vector would consist of
analyzing the source code of the web browser and find vulnerabilities in it that
could lead to an exploitation of the SRI.

No additional actions for further research can be devised for the second attack
vector, as the standard dictates the SRI requirements and effectively, the tested
web browsers forced them.

The third attack vector also cannot be expanded, as the limitation is caused by the
current computing capabilities, unable to find a mathematical collision in a
reasonable period of time. Maybe in the future some weaknesses are found in one
of the supported hashing algorithms that could lead to calculate rogue hashes.

The fourth attack vector looks promising, and further research on it is doable.
JavaScript has a plethora of functions and other hacks are prone to be found.

Finally, the fifth attack vector, was not able to be tested with real source code,
but from a theoretical point of view looks promising, as could potentially

|	17	
	

intercept and replace arbitrary source code from a web application, including
manipulating the SRI attributes.

9. Acknowledgments

The author would like to thank the
reviewers for their helpful comments
and advice. Finally, thanks to my
family and friends on both continents

who helped me in ways unknown to
them.

10. Acronyms and definitions.

SRI: Subresource Integrity

W3C: World Wide Web
Consortium

JS: JavaScript

CSS: Cascading Style Sheets

URI: Uniform Resource
Indentifier

OS: Operating System

JQuery: Cross platform
JavaScript library to simplify
client side scripting of HTML

Node.JS: Open source cross
platform JavaScript run-time
environment that executes
JavaScript code in server-side.

HTML: Hypertext Markup
Language

CORS: Cross-Origin Resource
Integrity

Hash: Mathematical encoding
and unique alphanumeric value
representation

CDN: Content Delivery
Networks

URL: Uniform Resource
Locator

HTTP: Hypertext Transfer
Protocol

HTTPs: Hypertext Transfer
Protocol Secure

CTF: Capture the Flag

SHA-512: International
Organization for Standardization

MITM: Main in The Middle

CSP: Content Security Policy

IIS: Internet Information
Services

CDN: Content Delivery
Network

WAF: Web Application
Firewall

IDS/IPS: Intrusion Detection
System / Intrusion Prevention
System

|	18	
	

11. References

[1.] https://blog.lukaszolejnik.com/maki
ng-third-party-hosted-scripts-safer-
with-subresource-integrity/

[2.] https://news.ycombinator.com/item?
id=14041697

[3.] https://hacks.mozilla.org/2015/09/su
bresource-integrity-in-firefox-43/

[4.] http://www.elladodelmal.com/2016/
03/subresource-integrity-sri-
fortifica-tu.html

[5.] https://en.wikipedia.org/wiki/Subres
ource_Integrity

[6.] https://www.w3.org/

[7.] https://en.wikipedia.org/wiki/Secure

_Hash_Algorithms

[8.] https://www.srihash.org

[9.] https://hacks.mozilla.org/2016/04/ho

w-to-implement-sri-into-your-build-
process/

[10.] https://es.wikipedia.org/wiki/Inte
rnet_Information_Services

[11.] https://docs.microsoft.com/en-
us/iis/configuration/system.webserv
er/httpprotocol/customheaders/

[12.] https://en.wikipedia.org/wiki/SH
A-2

[13.] https://www.w3.org/wiki/CORS
_Enabled

[14.] https://stackoverflow.com/questi
ons/1653308/access-control-allow-
origin-multiple-origin-domains

